Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354741

RESUMO

Capsaicinoids are responsible for the pungency in Capsicum species. These are synthesized by the Capsaicin synthase (CS) encoded by the AT3 gene, which catalyzes the transference of an acyl moiety from a branched-chain fatty acid-CoA ester to the vanillylamine to produce capsaicinoids. Some AT3 gene copies have been identified on the Capsicum genome. The absence of capsaicinoid in some nonpungent accessions is related to mutant AT3 alleles. The differences between CS protein copies can affect the tridimensional structure of the protein and the affinity for its substrates, and this could affect fruit pungency. This study characterized 32 AT3 sequences covering Capsicum pungent and non-pungent accessions. These were clustered in AT3-D1 and AT3-D2 groups and representative sequences were analyzed. Genomic upstream analysis shows different regulatory elements, mainly responsive to light and abiotic stress. AT3-D1 and AT3-D2 gene expression was confirmed in fruit tissues of C. annuum. Amino acid substitutions close to the predictable HXXXD and DFGWG motifs were also identified. AT3 sequences were modeled showing a BAHD acyltransferase structure with two connected domains. A pocket with different shape, size and composition between AT3 models was found inside the protein, with the conserved motif HXXXD exposed to it, and a channel for their accessibility. CS substrates exhibit high interaction energies with the His and Asp conserved residues. AT3 models have different interaction affinities with the (E)-8-methylnon-6-enoyl-CoA, 8-methylnonanoyl-CoA and vanillylamine substrates. These results suggested that AT3-D1 and AT3-D2 sequences encode CS enzymes with different regulatory factors and substratum affinities.Communicated by Ramaswamy H. Sarma.

2.
J Fungi (Basel) ; 9(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998861

RESUMO

The genus Pyricularia includes species that are phytopathogenic fungi, which infect different species of Poaceae, such as rice and sorghum. However, few isolates have been genetically characterized in North America. The current study addresses this lack of information by characterizing an additional 57 strains of three grasses (Stenotaphrum secundatum, Cenchrus ciliaris and Digitaria ciliaris) from two distant regions of Mexico. A Pyricularia dataset with ITS sequences retrieved from GenBank and the studied sequences were used to build a haplotype network that allowed us to identify a few redundant haplotypes highly related to P. oryzae species. An analysis considering only the Mexican sequences allowed us to identify non-redundant haplotypes in the isolates of C. ciliaris and D. ciliaris, with a high identity with P. pennisetigena. The Pot2-TIR genomic fingerprinting technique resulted in high variability and allowed for the isolates to be grouped according to their host grass, whilst the ERIC-PCR technique was able to separate the isolates according to their host grass and their region of collection. Representative isolates from different host grasses were chosen to explore the pathogenic potential of these isolates. The selected isolates showed a differential pathogenic profile. Cross-infection with representative isolates from S. secundatum and C. ciliaris showed that these were unable to infect D. ciliaris grass and that the DY1 isolate from D. ciliaris was only able to infect its host grass. The results support the identification of pathogenic strains of Pyricularia isolates and their cross-infection potential in different grasses surrounding important crops in Mexico.

3.
Front Plant Sci ; 14: 1195794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441182

RESUMO

Introduction: The fungal pathogen Fusarium verticillioides (Sacc.) Nirenberg (Fv) causes considerable agricultural and economic losses and is harmful to animal and human health. Fv can infect maize throughout its long agricultural cycle, and root infection drastically affects maize growth and yield. Methods: The root cell wall is the first physical and defensive barrier against soilborne pathogens such as Fv. This study compares two contrasting genotypes of maize (Zea mays L.) roots that are resistant (RES) or susceptible (SUS) to Fv infection by using transcriptomics, fluorescence, scanning electron microscopy analyses, and ddPCR. Results: Seeds were infected with a highly virulent local Fv isolate. Although Fv infected both the RES and SUS genotypes, infection occurred faster in SUS, notably showing a difference of three to four days. In addition, root infections in RES were less severe in comparison to SUS infections. Comparative transcriptomics (rate +Fv/control) were performed seven days after inoculation (DAI). The analysis of differentially expressed genes (DEGs) in each rate revealed 733 and 559 unique transcripts that were significantly (P ≤0.05) up and downregulated in RES (+Fv/C) and SUS (+Fv/C), respectively. KEGG pathway enrichment analysis identified coumarin and furanocoumarin biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction pathways as being highly enriched with specific genes involved in cell wall modifications in the RES genotype, whereas the SUS genotype mainly displayed a repressed plant-pathogen interaction pathway and did not show any enriched cell wall genes. In particular, cell wall-related gene expression showed a higher level in RES than in SUS under Fv infection. Analysis of DEG abundance made it possible to identify transcripts involved in response to abiotic and biotic stresses, biosynthetic and catabolic processes, pectin biosynthesis, phenylpropanoid metabolism, and cell wall biosynthesis and organization. Root histological analysis in RES showed an increase in lignified cells in the sclerenchymatous hypodermis zone during Fv infection. Discussion: These differences in the cell wall and lignification could be related to an enhanced degradation of the root hairs and the epidermis cell wall in SUS, as was visualized by SEM. These findings reveal that components of the root cell wall are important against Fv infection and possibly other soilborne phytopathogens.

4.
Front Plant Sci ; 14: 1066509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875614

RESUMO

Diverse morphological, cellular and physiological changes occur during seed maturation in Bixa orellana when the seed tissues form specialized cell glands that produce reddish latex with high bixin amounts. Transcriptomic profiling during seed development in three B. orellana accessions (P12, N4 and N5) with contrasting morphologic characteristics showed enrichment in pathways of triterpenes, sesquiterpenes, and cuticular wax biosynthesis. WGCNA allows groups of all identified genes in six modules the module turquoise, the largest and highly correlated with the bixin content. The high number of genes in this module suggests a diversification of regulatory mechanisms for bixin accumulation with the genes belonging to isoprene, triterpenes and carotene pathways, being more highly correlated with the bixin content. Analysis of key genes of the mevalonate (MVA) and the 2C-methyl-D-erythritol-4-phosphate (MEP) pathways revealed specific activities of orthologs of BoHMGR, BoFFP, BoDXS, and BoHDR. This suggests that isoprenoid production is necessary for compounds included in the reddish latex of developing seeds. The carotenoid-related genes BoPSY2, BoPDS1 and BoZDS displayed a high correlation with bixin production, consistent with the requirement for carotene precursors for apocarotenoid biosynthesis. The BoCCD gene member (BoCCD4-4) and some BoALDH (ALDH2B7.2 and ALDH3I1) and BoMET (BoSABATH1 and BoSABATH8) gene members were highly correlated to bixin in the final seed development stage. This suggested a contributing role for several genes in apocarotenoid production. The results revealed high genetic complexity in the biosynthesis of reddish latex and bixin in specialized seed cell glands in different accessions of B. orellana suggesting gene expression coordination between both metabolite biosynthesis processes.

5.
Genome ; 64(9): 879-891, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33555972

RESUMO

Technological and analytical advances to study evolutionary biology, ecology, and conservation of green turtles (Chelonia mydas) are realized through molecular approaches including DNA barcoding. We characterized the usefulness of COI DNA barcodes in green turtles in Mexico to better understand genetic divergence and other genetic parameters of this species. We analyzed 63 sequences, including 25 from green turtle field specimens collected from the Gulf of Mexico and from the Mexican Pacific and 38 already present in the Barcode of Life Data Systems (BOLD). A total of 13 haplotypes were identified with four novel haplotypes from the Pacific Ocean and three novel haplotypes from the Atlantic Ocean. Intraspecific distance values among COI gene sequences by two different models were 0.01, demonstrating that there is not a subdivision for green turtle species. Otherwise, the interspecific distance interval ranged from 0.07 to 0.13, supporting a clear subdivision among all sea turtle species. Haplotype and total nucleotide diversity values of the COI gene reflect a medium genetic diversity average. Green turtles of the Mexican Pacific showed common haplotypes to some Australian and Chinese turtles, but different from the haplotypes of the Mexican Atlantic. COI analysis revealed new haplotypes and confirmed that DNA barcodes were useful for evaluation of the population diversity of green turtles in Mexico.


Assuntos
Código de Barras de DNA Taxonômico , Tartarugas , Animais , Espécies em Perigo de Extinção , Haplótipos , México , Tartarugas/genética
6.
J Food Prot ; 83(9): 1495-1504, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236559

RESUMO

ABSTRACT: Colletotrichum species are the most important postharvest spoilage fungi of papaya fruit. The objective of this research was to evaluate the effect of temperature and relative humidity on growth rate and time for growth to become visible of five strains of Colletotrichum gloeosporioides isolated from papaya fruit in a complex medium. As a primary model, the radial growth rates were estimated using the Baranyi and Roberts model in papaya agar. The Solver MS Excel function was used to obtain the time to visible mycelium (tv). Secondary models obtained with the Rosso et al. cardinal model of inflection were applied to describe the effect of temperature on the growth rate (µ). The Arrhenius-Davey model was used to model tv. The obtained models seem to be satisfactory for describing both µ and tv. The relative humidity had an effect on µ and tv for all tested C. gloeosporioides isolates, but no model accurately described the behavior of the fungus. External validation of models was performed with papaya fruit. Growth models were developed with the same models used in vitro. The bias and the accuracy factors as indices for performance evaluation of predictive models in food microbiology as a function of temperature and RH were 1.22 and 1.33, respectively, for µ and 1.18 and 1.62, respectively, for tv, indicating accurate predictions. The supply chain of papaya is complex and requires constant conditions, and poor conditions can result in damage to the fruit. Knowledge of the behavior of C. gloeosporioides on papaya fruit and application of the developed models in the supply chain will help to establish transport control strategies to combat these fungi. This research has contributed to development of the first models of growth for C. gloeosporioides in Mexico.


Assuntos
Carica , Colletotrichum , Frutas , México , Doenças das Plantas
7.
PeerJ ; 7: e7064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275744

RESUMO

Carotenoid cleavage dioxygenases (CCDs) are enzymes that have been implicated in the biosynthesis of a wide diversity of secondary metabolites with important economic value, including bixin. Bixin is the second most used pigment in the world's food industry worldwide, and its main source is the aril of achiote (Bixa orellana L.) seeds. A recent transcriptome analysis of B. orellana identified a new set of eight CCD members (BoCCD4s and BoCCD1s) potentially involved in bixin synthesis. We used several approaches in order to discriminate the best candidates with CCDs genes. A reverse transcription-PCR (RT-qPCR) expression analysis was carried out in five developmental stages of two accessions of B. orellana seeds with different bixin contents: (P13W, low bixin producer and N4P, high bixin producer). The results showed that three BoCCDs (BoCCD4-1, BoCCD4-3, and BoCCD1-1) had an expression pattern consistent with bixin accumulation during seed development. Additionally, an alignment of the CCD enzyme family and homology models of proteins were generated to verify whether the newly proposed CCD enzymes were bona fide CCDs. The study confirmed that these three enzymes were well-preserved and belonged to the CCD family. In a second selection round, the three CCD genes were analyzed by in situ RT-qPCR in seed tissue. Results indicated that BoCCD4-3 and BoCCD1-1 exhibited tissue-specific expressions in the seed aril. To test whether the two selected CCDs had enzymatic activity, they were expressed in Escherichia coli; activity was determined by identifying their products in the crude extract using UHPLC-ESI-QTOF-MS/MS. The cleavage product (bixin aldehyde) was also analyzed by Fourier transform infrared. The results indicated that both BoCCD4-3 and BoCCD1-1 cleave lycopene in vitro at 5,6-5',6'.

8.
Food Technol Biotechnol ; 57(4): 544-553, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32123516

RESUMO

Mezcal is a distillate produced by spontaneous fermentation of the must obtained from stalks of Agave spp. plants that are cooked and pressed. Agave must contains a high amount of fructose and phenolic compounds, and fermentation usually occurs under stressful (and uncontrolled) environmental conditions. Yeasts capable of growing under such conditions usually display advantageous biological and industrial traits for stress tolerance such as flocculation. In this study, seven Saccharomyces cerevisiae strains isolated from mezcal must were exposed to temperatures ranging between 10 and 40 °C, and to different sugar sources (fructose or glucose). Yeasts grown in fructose increased their stress tolerance, determined by colony count in a microdrop assay, under low temperature (10 °C) compared to the growth at 40 °C on solid cultures. The most stress-tolerant mezcal strain (Sc3Y8) and a commercial wine (Fermichamp) strain, used as control, were grown under fermentation conditions and exposed to long-term temperature stress to determine their performance and their potential for flocculation. Compared to glucose, fermentation on fructose increased the metabolite accumulation at the end of culture, particularly at 40 °C, with 2.3, 1.3 and 3.4 times more glycerol (8.6 g/L), ethanol (43.6 g/L) and acetic acid (7.3 g/L), respectively. Using confocal microscopy analysis, we detected morphological changes such as aggregation and wall recognition at the level of budding scars in yeast, particularly in the Sc3Y8 strain when it was exposed to 40 °C. The analysis confirmed that this mezcal strain was positive for flocculation in the presence of Ca2+ ions. Analysis of FLO1, FLO5 and FLO11 gene expression implicated in flocculation in both Saccharomyces strains showed a strong transcriptional induction, mainly of the FLO5 gene in the mezcal Sc3Y8 strain.

9.
Front Microbiol ; 7: 201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941725

RESUMO

Soil and rock surfaces support microbial communities involved in mineral weathering processes. Using selective isolation, fungi were obtained from limestone surfaces of Mayan monuments in the semi-arid climate at Yucatan, Mexico. A total of 101 isolates representing 53 different taxa were studied. Common fungi such as Fusarium, Pestalotiopsis, Trichoderma, and Penicillium were associated with surfaces and were, probably derived from airborne spores. In contrast, unusual fungi such as Rosellinia, Annulohypoxylon, and Xylaria were predominantly identified from mycelium particles of biofilm biomass. Simulating oligotrophic conditions, agar amended with CaCO3 was inoculated with fungi to test for carbonate activity. A substantial proportion of fungi, in particular those isolated from mycelium (59%), were capable of solubilizing calcium by means of organic acid release, notably oxalic acid as evidenced by ion chromatography. Contrary to our hypothesis, nutrient level was not a variable influencing the CaCO3 solubilization ability among isolates. Particularly active fungi (Annulohypoxylon stygium, Penicillium oxalicum, and Rosellinia sp.) were selected as models for bioweathering experiments with limestone-containing mesocosms to identify if other mineral phases, in addition to oxalates, were linked to bioweathering processes. Fungal biofilms were seen heavily covering the stone surface, while a biomineralized front was also observed at the stone-biofilm interface, where network of hyphae and mycogenic crystals was observed. X-ray diffraction analysis (XRD) identified calcite as the main phase, along with whewellite and wedellite. In addition, lower levels of citrate were detected by Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy (ATR-FTIR). Overall, our results suggest that a diverse fungal community is associated with limestone surfaces insemi-arid climates. A subset of this community is geochemically active, excreting organic acids under quasi-oligotrophic conditions, suggesting that the high metabolic cost of exuding organic acids beneficial under nutrient limitation. Oxalic acid release may deteriorate or stabilize limestone surfaces, depending on microclimatic dynamics.

10.
Infect Genet Evol ; 16: 254-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23416432

RESUMO

The low dispersal capacity of sand flies could lead to population isolation due to geographic barriers, climate variation, or to population fragmentation associated with specific local habitats due to landscape modification. The phlebotomine sand fly Lutzomyia cruciata has a wide distribution throughout Mexico and is a vector of Leishmania mexicana in the southeast. The aim of this study was to evaluate the genetic diversity, structure, and divergence within and among populations of Lu. cruciata in the state of Chiapas, and to infer the intra-specific phylogeny using the 3' end of the mitochondrial cytochrome b gene. We analyzed 62 sequences from four Lu. cruciata populations and found 26 haplotypes, high genetic differentiation and restricted gene flow among populations (Fst=0.416, Nm=0.701, p<0.001). The highest diversity values were recorded in populations from Loma Bonita and Guadalupe Miramar. Three lineages (100% bootstrap and 7% overall divergence) were identified using a maximum likelihood phylogenetic analysis which showed high genetic divergence (17.2-22.7%). A minimum spanning haplotype network also supported separation into three lineages. Genetic structure and divergence within and among Lu. cruciata populations are hence affected by geographic heterogeneity and evolutionary background. Data obtained in the present study suggest that Lu. cruciata in the state of Chiapas consists of at least three lineages. Such findings may have implications for vector capacity and hence for vector control strategies.


Assuntos
Insetos Vetores/genética , Psychodidae/genética , Animais , Análise por Conglomerados , Citocromos b/genética , Feminino , Genes de Insetos/genética , Variação Genética , Haplótipos/genética , Insetos Vetores/classificação , Leishmania mexicana/isolamento & purificação , Leishmaniose Cutânea/transmissão , México , Filogenia , Psychodidae/classificação , Psychodidae/enzimologia
11.
Antonie Van Leeuwenhoek ; 103(4): 833-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23271642

RESUMO

Mezcal from Tamaulipas (México) is produced by spontaneous alcoholic fermentation using Agave spp. musts, which are rich in fructose. In this study eight Saccharomyces cerevisiae isolates obtained at the final stage of fermentation from a traditional mezcal winery were analysed in three semi-synthetic media. Medium M1 had a sugar content of 100 g l(-1) and a glucose/fructose (G/F) of 9:1. Medium M2 had a sugar content of 100 g l(-1) and a G/F of 1:9. Medium M3 had a sugar content of 200 g l(-1) and a G/F of 1:1. In the three types of media tested, the highest ethanol yield was obtained from the glucophilic strain LCBG-3Y5, while strain LCBG-3Y8 was highly resistant to ethanol and the most fructophilic of the mezcal strains. Strain LCBG-3Y5 produced more glycerol (4.4 g l(-1)) and acetic acid (1 g l(-1)) in M2 than in M1 (1.7 and 0.5 g l(-1), respectively), and the ethanol yields were higher for all strains in M1 except for LCBG-3Y5, -3Y8 and the Fermichamp strain. In medium M3, only the Fermichamp strain was able to fully consume the 100 g of fructose l(-1) but left a residual 32 g of glucose l(-1). Regarding the hexose transporters, a high number of amino acid polymorphisms were found in the Hxt1p sequences. Strain LCBG-3Y8 exhibited eight unique amino acid changes, followed by the Fermichamp strain with three changes. In Hxt3p, we observed nine amino acid polymorphisms unique for the Fermichamp strain and five unique changes for the mezcal strains.


Assuntos
Etanol/metabolismo , Hexoses/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Agave/metabolismo , Agave/microbiologia , Meios de Cultura/química , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fermentação , Genes de RNAr , Glicerol/metabolismo , Dados de Sequência Molecular , RNA Fúngico/genética , RNA Ribossômico/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/isolamento & purificação , Análise de Sequência de DNA
12.
Electron. j. biotechnol ; 15(4): 4-4, July 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-646954

RESUMO

Background: Urban surface stones in Mexico City are exposed to a temperate climate and a range of atmospheric conditions ranging from mildly impacted to heavily polluted areas. In this study, we focused on the characterization of the cultivable fungal component of selected biological patinas in the surrounding area of Chapultepec castle, a historic monument in Mexico City. Thirty four representative fungal isolates selected based on distinctive differential macroscopic characteristics out of a total of 300 fungi, were characterized using morphological and molecular approaches. Results: This identification strategy based on the combination of phenotypic- and molecular-based methodologies allowed us to discriminate the fungal community in some cases down to the species level. Conclusions: The characterization of this mycoflora revealed the presence of a complex fungal community mainly represented by filamentous fungi belonging to the genera Fusarium, Trichoderma, Aspergillus, Cladosporium, Alternaria, Mucor, Penicillium, Pestalotiopsis, and the dimorphic fungus Aureobasidium, along with the yeast Rhodotorula. A specific distribution of fungi could be observed based on the type of biological patina analyzed.


Assuntos
Edifícios , Fungos/isolamento & purificação , Fungos/genética , Características do Solo , Área Urbana , DNA Fúngico/genética , Atmosfera , Técnicas de Cultura , Variação Genética , México , Fenótipo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
13.
Biotechnol Lett ; 33(5): 1021-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21234788

RESUMO

An isolate of Dunaliella salina (DUNS-1) and other two isolates (DUNS-2 and DUNS-3), collected from coastal lagoons with 14 and 30% (w/v) of NaCl, respectively, were analyzed under different saline conditions. Glycerol (380 mg l(-1)) and carotene (5.9 mg l(-1)) contents for DUNS-2 were 0.3 and 10 times higher than DUNS-3, even though both isolates were collected from the same lagoon and share a similar ribosomal DNA sequence.


Assuntos
Salinidade , Cloreto de Sódio/metabolismo , Estresse Fisiológico , Volvocida/efeitos dos fármacos , Volvocida/fisiologia , Carotenoides/análise , DNA Intergênico/química , DNA Intergênico/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glicerol/análise , Dados de Sequência Molecular , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA , Volvocida/química
14.
Biotechnol Lett ; 28(11): 787-91, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16786242

RESUMO

The expression of mRNAs coding for 1-deoxyxylulose-5-phosphate synthase (DXS) and phytoene synthase (PSY) were studied in Dunaliella salina grown under nitrogen-sufficient (NS) and nitrogen-limited (NL) conditions. Under NS conditions growth was 2.5 times higher than under NL conditions. No differences were found in chlorophyll a content per cell, and total carotenoid content per cell was 5.33 pg 1(-1) for the NS treatment and 7.76 pg 1(-1) for the NL. DXS transcripts exhibited diminished expression under NL conditions, peaking at day 15 of cultivation in both treatments. Simultaneously, PSY transcripts exhibited constant expression under both conditions. These results suggest that these genes play an important role in the balance of photosynthetic pigments during pigment accumulation.


Assuntos
Alquil e Aril Transferases/metabolismo , Carotenoides/metabolismo , Clorófitas/genética , Transferases/metabolismo , Alquil e Aril Transferases/genética , Carotenoides/genética , Clorófitas/enzimologia , Regulação da Expressão Gênica/fisiologia , Geranil-Geranildifosfato Geranil-Geraniltransferase , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Transferases/genética
15.
Mol Biotechnol ; 30(1): 51-6, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15805576

RESUMO

A protocol is described for rapid DNA isolation from marine biofilm microorganisms embedded in large amounts of exopolysaccharides. The method is a modification of the hot phenol protocol used for plants tissues, where nonexpensive and easily available enzymes were used. The method is based on the incubation of biofilm biomass samples in an extraction buffer mixed with phenol preheated at 65 degrees C. The procedure can be completed in 2 h and up to 20 samples can be processed simultaneously with ease and DNA of excellent quality, as shown by successfully amplification of polymerase chain reaction (PCR) products. DNA was recovered from a range of intertidal marine biofilms with varying amounts of exopolysaccharides.


Assuntos
Bactérias/genética , Técnicas de Tipagem Bacteriana , Biofilmes , DNA Bacteriano/genética , Microbiologia da Água , Bactérias/classificação , Técnicas de Tipagem Bacteriana/métodos , Biofilmes/classificação , DNA Bacteriano/isolamento & purificação , Oceanos e Mares , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...